terça-feira, 4 de setembro de 2012

Definição de Conjunto

Conjunto é uma reunião de elementos, podemos dizer que essa definição é bem primitiva, mas a partir dessa ideia podemos relacionar outras situações. O conjunto universo e o conjunto vazio são tipos especiais de conjuntos. 
Vazio: não possui elementos e pode ser representado por { } ou Ø. 
Universo: possui todos os elementos de acordo com o que estamos trabalhando, pode ser representado pela letra maiúscula U. 

Representando conjuntos 

A representação de um conjunto depende de determinadas condições: 

Exemplo 1 
Condição: O conjunto dos números pares maiores que zero e menores que quinze. Representação através de seus elementos. 
A = {2, 4, 6, 8, 10, 12, 14} 

Representação pela propriedade de seus elementos. 
A = {x / x é par e 0 < x < 15}, o símbolo da barra (/) significa “tal que”. 
x tal que x é par e x maior que zero e x menor que 15. 
Exemplo 2 
Condição: O conjunto dos números Naturais ímpares menores que vinte. Elementos 
A = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19} 

Propriedade dos elementos 
A = {x Є N / x é impar e x < 20} 
x pertence aos naturais tal que x é impar menor que 20. 
Outra forma de representação de conjuntos de elementos é a utilização de diagramas. Observe os conjuntos A e B. 
A = {x / 2 < x ≤ 12} e B = {x / 4 < x < 8} 


União do conjunto A com o conjunto B. (A U B) 

Os conjuntos servem para representar qualquer situação envolvendo ou não elementos. Na Matemática, uma importante aplicação dos conjuntos é na representação de conjuntos numéricos. 

Conjunto dos números Naturais
Conjunto dos números Inteiros
Conjunto dos números Racionais
Conjunto dos números Irracionais
Conjunto dos números Reais
Conjunto dos números Complexos
Conjunto dos números Algébricos
Conjunto dos números Transcendentais
Conjunto dos números Imaginários 

Os estudos básicos sobre conjuntos deram origem aos estudos relacionados às Teorias dos Conjuntos, que faz uma análise sobre as suas propriedades. Esses estudos se originaram nos trabalhos do matemático russo Georg Cantor. Na teoria dos conjuntos, os elementos podem ser: pessoas, números, outros conjuntos, dados estatísticos e etc. 

Funções

Função de 1º Grau


Gráfico de uma função do 1° grau.


O estudo das funções é importante, uma vez que elas podem ser aplicadas em diferentes circunstâncias: nas engenharias, no cálculo estatístico de animais em extinção, etc.
O significado de função é intrínseco à matemática, permanecendo o mesmo para qualquer tipo de função, seja ela do 1° ou do 2° grau, ou uma função exponencial ou logarítmica. Portanto, a função é utilizada para relacionar valores numéricos de uma determinada expressão algébrica de acordo com cada valor que a variável x assume.
Sendo assim, a função do 1° grau relacionará os valores numéricos obtidos de expressões algébricas do tipo (ax + b), constituindo, assim, a função f(x) = ax + b.
Note que para definir a função do 1° grau, basta haver uma expressão algébrica do 1° grau. Como dito anteriormente, o objetivo da função é relacionar para cada valor de x um valor para o f(x). Vejamos um exemplo para a função f(x)= x – 2.
x = 1, temos que f(1) = 1 – 2 = –1
x = 4, temos que f(4) = 4 – 2 = 2
Note que os valores numéricos mudam conforme o valor de x é alterado, sendo assim obtemos diversos pares ordenados, constituídos da seguinte maneira: (x, f(x)). Veja que para cada coordenada x, iremos obter uma coordenada f(x). Isso auxilia na construção de gráficos das funções.
Portanto, para que o estudo das funções do 1° grau seja realizado com sucesso, compreenda bem a construção de um gráfico e a manipulação algébrica das incógnitas e dos coeficientes.

Função de 2º Grau



Gráfico da Função de 2º Grau


Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a ≠ 0, é denominada função do 2º grau. Generalizando temos:


As funções do 2º grau possuem diversas aplicações no cotidiano, principalmente em situações relacionadas à Física envolvendo movimento uniformemente variado, lançamento oblíquo, etc.; na Biologia, estudando o processo de fotossíntese das plantas; na Administração e Contabilidade relacionando as funções custo, receita e lucro; e na Engenharia Civil presente nas diversas construções.

A representação geométrica de uma função do 2º grau é dada por uma parábola, que de acordo com o sinal do coeficiente a pode ter concavidade voltada para cima ou para baixo.
As raízes de uma função do 2º grau são os pontos onde a parábola intercepta o eixo x. Dada a função f(x) = ax² + bx + c, se f(x) = 0, obtemos uma equação do 2º grau, ax² + bx + c = 0, dependendo do valor do discriminante ? (delta), podemos ter as seguintes situações gráficas:

? > 0, a equação possui duas raízes reais e diferentes. A parábola intercepta o eixo x em dois pontos distintos.

? = 0, a equação possui apenas uma raiz real. A parábola intercepta o eixo x em um único ponto.
? < 0, a equação não possui raízes reais. A parábola não intercepta o eixo x.




Trigonometria no Triângulo Retângulo

O triângulo é a figura mais simples e uma das mais importantes da Geometria, ele é objeto de estudos desde os povos antigos. O triângulo possui propriedades e definições de acordo com o tamanho de seus lados e medida dos ângulos internos. Quanto aos lados, o triângulo pode ser classificado da seguinte forma:

Equilátero: possui os lados com medidas iguais.
Isósceles: possui dois lados com medidas iguais.
Escaleno: possui todos os lados com medidas diferentes. 


Quanto aos ângulos, os triângulos podem ser denominados:

Acutângulo: possui os ângulos internos com medidas menores que 90º
Obtusângulo: possui um dos ângulos com medida maior que 90º.
Retângulo: possui um ângulo com medida de 90º, chamado ângulo reto. 


No triângulo retângulo existem algumas importantes relações, uma delas é oTeorema de Pitágoras, que diz o seguinte: “A soma dos quadrados dos catetos é igual ao quadrado da hipotenusa”. Essa relação é muito importante na geometria, atende inúmeras situações envolvendo medidas.

As relações trigonométricas existentes no triângulo retângulo admitem três casos: seno, cosseno e tangente.
Vamos determinar as relações de acordo com o triângulo BAC com lados medindo a, b e c.
senoB = b/a
cossenoB = c/a
tangenteB = b/c

senoC = c/a
cossenoC = b/a
tangenteC = c/b

A trigonometria possui diversas aplicações no cotidiano, abrange áreas relacionadas à Astronomia, Física, Geometria, Navegação entre outras.




Circunferência trigonométrica

A circunferência trigonométrica está representada no plano cartesiano com raio medindo uma unidade. Ela possui dois sentidos a partir de um ponto A qualquer, escolhido como a origem dos arcos. O ponto A será localizado na abscissa do eixo de coordenadas cartesianas, dessa forma, este ponto terá abscissa 1 e ordenada 0. Os eixos do plano cartesiano dividem o círculo trigonométrico em quatro partes, chamadas de quadrantes, onde serão localizados os números reais α relacionados a um único ponto P. Os sentidos dos arcos trigonométricos estão de acordo com as seguintes definições: 

Se α = 0, P coincide com A.
Se α > 0, o sentido do círculo trigonométrico será anti-horário.
Se α < 0, o sentido do círculo será horário.
O comprimento do arco AP será o módulo de α.
 


Na ilustração a seguir estão visualizados alguns números importantes, eles são referenciais para a determinação principal de arcos trigonométricos:


















Uma volta completa no círculo trigonométrico corresponde a 360º ou 2π radianos, se o ângulo α a ser localizado possuir módulo maior que 2π, precisamos dar mais de uma volta no círculo para determinarmos a sua imagem. 

Por exemplo, para localizarmos 8π/3 = 480º, damos uma volta completa no sentido anti-horário e localizamos o arco de comprimento 2π/3, pois 8π/3 = 6π/3 + 2π/3 = 2π + 2π/3.


Na localização da determinação principal de –17π/6 = –510º, devemos dar 2 voltas completas no sentido horário e localizarmos o arco de comprimento –5π/6, pois –17π/6 = –12π/6 – 5π/6 = 2π – 5π/6